Reduction Free Normalisation for a proof irrelevant type of propositions
نویسندگان
چکیده
We show normalisation and decidability of convertibility for a type theory with hierarchy universes proof irrelevant propositions, close to the system used in assistant Lean. Contrary previous arguments, does not require explicitly introduce notion neutral normal forms.
منابع مشابه
A Generic Normalisation Proof for Pure Type
We prove the strong normalisation for any PTS, provided the existence of a certain-set A * (s) for every sort s of the system. The properties veriied by the A * (s)'s depend of the axiom and rules of the type system.
متن کاملReduction - free normalisation for system
We present a semantical proof of existence of normal forms for system F including -equality. A reduction-free normalisation function can be obtained from this. The proof uses the method of glueing (a variant of) the term model along the global sections functor, carried out in the internal language of a category of presheaves. As a by-product we obtain an semantical explanation of higherorder ab...
متن کاملReduction-Free Normalisation for a Polymorphic System
We give a semantic proof that every term of a combi-nator version of system F has a normal form. As the argument is entirely formalisable in an impredicative constructive type theory a reduction-free normalisation algorithm can be extracted from this. The proof is presented as the construction of a model of the calculus inside a category of presheaves. Its deenition is given entirely in terms o...
متن کاملOn the Strength of Proof-Irrelevant Type Theories
We present a type theory with some proof-irrelevance built into the conversion rule. We argue that this feature is useful when type theory is used as the logical formalism underlying a theorem prover. We also show a close relation with the subset types of the theory of PVS. We show that in these theories, because of the additional extentionality, the axiom of choice implies the decidability of ...
متن کاملa cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Logical Methods in Computer Science
سال: 2023
ISSN: ['1860-5974']
DOI: https://doi.org/10.46298/lmcs-19(3:5)2023